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Abstract: In complex network, the preferential attachment mechanism which originated from the BA model is one
of the essentials to improve the synchronizability. First of all, the synchronizability of a class of continuous-time
dynamical networks is investigated in the paper. Then some local-world network models, such as the local-world
networks, the local-world synchronization-optimal networks and the local-world node deleting evolving network,
are introduced. And we have proposed a local-world synchronization-preferential growth topology model. The
view have been validated that synchronizability is always improved as the maximum betweenness centrality is
reduced. Furthermore, it has been found that the synchronizability of the dynamical network with the local-world
synchronization-preferential mechanism is robust against not only the random removal of vertices but also the
specific removal of those most connected vertices.
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1 Introduction

In the past ten years, in order to understand the gener-
ic features that characterize the formation and topolo-
gy of complex networks, a lot of research work has
been devoted to the study of a large-scale complex
system described by a network or a graph with com-
plex topology, whose nodes are the elements of the
system and whose edges represent the interactions a-
mong them. Examples of all kinds of complex net-
works contain the Internet, the World Wide Web, food
webs, electric power grids, cellular and metabolic net-
works, etc. [1-7]. There are always better cooperative
or synchronous behaviors among their constituents as
shown in these good-sized complex networks.

In real-world complex networks, community
structure is an important characteristic, including bi-
ological networks composed of functional modules,
and social networks. And these networks are of-
ten composed of groups of similar individuals. Re-
searchers proposed a lot of methods that examine
community topology, or connectivity between its n-
odes, to identify interesting structures. We claim,
however, that the network structure of complex net-
works is the product of both their topology and dy-
namical processes taking place on them. Convention-
ally complex networks were researched by graph the-
ory, for which a complex network was described by
a random graph, where the radical theory was intro-

duced by Erd̈os and Ŕenyi [8]. Currently, Watts and
Strogatz (WS) [9] proposed the conception of small-
world networks to describe a transition from a regular
lattice to a random graph. The WS network exhibits
two properties, which are a high degree of clustering
as in the regular networks and a small average dis-
tance between two nodes as in the random networks.
In addition, the random graph model and the WS mod-
el are both homogeneous in substance. Nevertheless,
based on Barab́asi and Albert [10], empirical result-
s display that many large-scale complex networks are
scale-free. They have addressed that two key mecha-
nisms are indispensable for explaining the scale-free
feature in complex networks. And the two key mech-
anisms are growth and preferential attachment.

The BA scale-free network model captures the ba-
sic mechanism which is known as the power-law de-
gree distribution, but the model still has several limi-
tations: it only predicts a fixed exponent in a power-
law degree distribution, while the measured real net-
works’ exponents actually vary mostly from1 to 3.
To overcome these limitations and further understand
various microscopic processes under the influence of
the network topology and evolution, the researcher
have done many valuable work about the aspect. The
evolution factors may include a kind of sides. To
some extent, some researchers discussed a nonlinear
preferential attachment scheme with the degree prob-
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ability; some researchers considered the accelerated
growth in a directed network; the others also investi-
gated the competition aspect and the distance prefer-
ence. For details, please refer to the relevant literature
[11-13]. Synchronization of complex networks has
been a subject of intensive research with potential ap-
plications. On the one hand, some novel control laws
were proposed to study the synchronization of com-
plex networks. In Ref. [14], a novel impulsive con-
trol law was proposed for synchronization of stochas-
tic discrete complex networks. A simple but effective
pinning algorithm for reaching synchronization on a
general complex dynamical network was proposed
[15]. Recently, researchers discussed the consensus in
multi-agent dynamical systems [16-18]. On the other
hand, network topology structure provides a power-
ful metaphor for describing sophisticated collabora-
tive dynamics of many practical systems in essence.
Thus some researchers proposed some new network
models to study the synchronization of complex net-
works. Local-world evolving network model was pro-
posed in [19]. It captured an important feature in evo-
lution of many real-world complex networks: pref-
erential attachment mechanism works only within lo-
cal world instead of whole network-wide. According
to the local-world evolving model, S. W. Sunet al.
[20] studied the statistical properties of networks con-
structed and found that local world size M had great
effect on network’s connectivity: bigger M made the
networks more heterogeneous in connectivity. A com-
prehensive multi-local-world model was proposed in
[21]. In the paper, we have proposed a local-world
synchronization-preferential growth topology model.
Furthermore, it has been found that the synchroniz-
ability of the dynamical network with the local-world
synchronization-preferential mechanism is robust a-
gainst not only the random removal of vertices but
also the specific removal of those most connected ver-
tices. The rest of the paper is organized as follows: In
the preliminary Section II, a synchronization stabili-
ty criterion as well as the local-world evolving net-
work model and the local-world node deleting evolv-
ing network model are described. Then a local-world
synchronization-preferential growth topology model
is presented in the Section III. In the Section IV, the
synchronization is introduced and studied, followed
by some discussions on its synchronization robustness
and fragility. Finally, Section V concludes the investi-
gation.

2 Preliminaries

2.1 Synchronization stability criterion of
complex dynamical networks

Consider a dynamical network consisting of N identi-
cal linearly and diffusively coupled nodes, with each
node being an n-dimensional dynamical system. The
state equations of the network can be written as[11,
22]

ẋi = f(xi) + c
N
∑

j=1

aijΓxj, i = 1, 2, ..., N (1)

wherexi = (xi1, xi2, ..., xin)
T ∈ Rn is a state vector

representing the state variables of nodei, the constan-
t c > 0 is the coupling strength. For simplicity, we
takeΓ = diag{1, 0, ..., 0} ∈ Rn×n. A = (aij)is
the coupling configuration matrix representing topo-
logical structure of the network , in whichaij is de-
fined as follows: if there is a connection from node
i to nodej(i 6= j), thenaij = aji = 1, otherwise
aij = aji = 0(i 6= j), and the diagonal elements of
matrix A are defined by

aii = −
N
∑

j=1,j 6=i

aij = −ki, i = 1, 2, ..., N (2)

where the degreeki of nodei is defined to be the num-
ber of connection incidents on nodei.

The coupling matrixA represents the coupling
configuration of the network. Suppose that the net-
work is connected in the sense that there are no isolate
clusters.A is a symmetric and irreducible matrix. In
this case, it can be shown that zero is an eigenvalue of
A with multiplicity 1 and all the other eigenvalues of
A are strictly negative[23].

Dynamical network (1) is said to be (asymptoti-
cally) synchronized if

x1(t) = x2(t) = ... = xN (t) = s(t), as t → ∞
(3)

where s(t) ∈ Rn is a solution of an isolate node,
namely,ṡ(t) = f(s(t)), which can be an equilibrium
point, a periodic orbit, or a chaotic attractor, depend-
ing on the interest of study.

Let 0 = λ1 ≥ λ2 ≥ ...λN be the eigenvalues of
the coupling matrixA. Suppose that there exists an
n × n diagonal matrixΛ and two constants̄d andτ ,
such that

[Df(s(t)+dΓ)]TΛ+Λ[Df(s(t)+dΓ)] ≤ −τIn (4)

For alld ≤ d̄ , whereIn ∈ Rn×n is an unit matrix
andDf(s(t)) is the Jacobian off ats(t) . It has been
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shown that the synchronized state (3) is exponentially
stable if[12]

c ≥ |d̄/λ2| (5)

Note that criterion (5) may not hold if the dynam-
ical equations of a network cannot be written in the
form of (1)[24].

Given the dynamics of an isolated node, the syn-
chronizability of network (1) with respect to a specific
coupling configurationA is said to be strong if the net-
work can synchronize with a small coupling strength
c. Inequality (5) implies that the synchronizability of
network (1) can be characterized by the second-largest
eigenvalue of its coupling matrix, i.e., the smaller the
second-largest eigenvalue, the stronger the synchro-
nizability of a network.

2.2 The local-world evolving network model
In many real-life networks, owing to the existence of
the local-world connectivity discussed above, each n-
ode in a network only has local connections therefore
only owns local information about the entire network.
To model such a local-world effect, a local-world e-
volving network model is proposed, to be generated
by the following algorithm [19]:

(i) Start with a small numberm0 of nodes and a
small numbere0 of edges.

(ii) SelectM nodes randomly from the existing
network, referred to as the ”local world” of the new
coming node.

(iii) Add a new node with m edges, linking to m n-
odes in its local world determined in (ii), using a pref-
erential attachment with probabilityΠ(ki) defined at
every time step t by

Π(ki) =
M

m0 + t

ki
∑

j∈Local kj
(6)

After t time steps, this procedure results in a net-
work with N = t + m0 nodes andE = e0 + mt
edges. In the following. For simplicity and no loss of
generality, we assumeM = m0 .

In order to obtain a dynamical network model
whose synchronizability is stronger than the local-
world model, we have constructed a network growth
model with optimal synchronizability[25]. When a
new vertex is added to the network, the criterion
for choosing the m vertices to which the new ver-
tex connects is to optimize the synchronizability of
the obtained network, that is, to minimize the second-
largest eigenvalue of the corresponding coupling ma-
trix. After t ≫ m0 time steps, we obtain a local-
world synchronization-optimal growing network with
N = t+m0 vertices.

2.3 The local-world node deleting evolving
network model

In the local-world node deleting evolving network (L-
WD network), an undirected and unweighted network
is initialized with a small numberm0 isolated nodes.
The network is evolved with the following scheme
[26].

At each time stept, either we act (i) with proba-
bility pa or we act (ii) with probability1− pa.

(i) Node adding. The addition is achieved as fol-
lows:

(1) Growth: add a new node withm(m ≤ m0)
edges connected to the network;

(2) Local-world establishment: randomly select
M nodes from the whole network as the local world;

(3) Preferential attachment: addm edges between
the new coming node andM existing nodes in the
local-world, the probability for nodei selected in the
local world is:

Π(ki) =
M

N(t)

ki
∑

j∈Local kj

whereN(t) is the total number of nodes aftert time
steps.

(ii) Node deleting: delete a node from the network
randomly and remove all the edges once attached to
the deleting node.

3 The local-world synchronization-
preferential dynamical network
model

The synchronizability of the newly generated net-
work is optimal when each new edge is added in-
to the above local-world synchronization-optimal net-
work. However, in most real networks the preferen-
tial attachment rule exists. We assume that a new
vertex is more likely to link to the vertices to form
the network with strong synchronizability. Hereby,
a novel local-world dynamical network model called
the local-world synchronization-preferential dynami-
cal network model is proposed in this paper. Then the
new network generation algorithm of the model is as
follows:

(i) Start with a small numberm0 of nodes and a
small numbere0 of edges.

(ii) SelectM nodes randomly from the existing
network, referred to as the ”local world” of the new
coming node.

(iii)Add a new node withm edges, linking tom n-
odes in its local world determined in (ii), using a pref-
erential attachment with probabilityΠi defined at ev-
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Figure 1: (color online)The degree distribution of n-
odes p(k) of the BA networks (circles), the LW net-
works (squares), the LWD networks (diamonds), L-
WSP (plus) and the LWSO networks (pentagrams). In
addition, the real line is p(k) of BA model and the dash
line is the theoretical prediction of p(k) of LWD net-
work. One inset shows the degree distribution of the
BA networks, the LWSP networks and the theoretical
prediction(BA); the other shows the LWD part.

ery time step t by

Πi =
M

m0 + t

λ2i
∑

j∈Local λ2j
(7)

This procedure results in a network withN = t+
m0 nodes andE = e0 +mt edges aftert time steps.

The network topology has significant effects on
its traffic protocols, searching algorithms, and even
virus propagation, therefore modeling the network
topology is extremely important. Currently, there are
quite some models proposed and applied to describe
the network topological features and properties, such
as the BA[10], LW[19] and LWD[26] models. For
simplify, we takeN = 1000, m = 3, m0 = 10 ,
M = 10 andpa = 0.7 . The details are as shown in
Fig.1.

We have known that the connectivity of the BA
scale-free network is heterogeneous: most vertices
have few connections and a small number of vertices
have many connections. We have also found that
local-world networks are topological quasimulticen-
ter networks. There is a number of the ”hubs” which
are almost connected with all of vertices, but most
of the vertices have very few connections. However,
how about the topological structure of this local-world
synchronization-optimal network model? It has been
pointed out that the eigenvalues spectrum of complex
networks provides information about their structural
properties and the quantity measures the distance of
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Figure 2: (color online)The values of R for the local-
world networks(solid line with circles), the local-
world synchronization-optimal networks(dotted line
with diamonds) and the local-world synchronization-
preferential dynamical network(dash-dotted line with
squares). Each curve in the figure is the average result
of 5 groups of networks.

the first eigenvalue from the rest part of the spec-
tral density normalized by the extension of the rest
part[27].

As shown in Fig.2, the figure represents the val-
ues of R of the local-world networks (LW), the local-
world synchronization-optimal networks (LWSO) and
the local-world synchronization-preferential dynami-
cal network (LWSP) withM = 10 andm = 3, while
the sizeN of networks ranges from10 to 1000. Then
those symbols stand for the same meaning in the fol-
lowing figures. It can be observed that as the network
sizeN increases, values ofR of the three categories
of networks decay to converge to a power law asM
increases. However, the value ofR of the local-world
synchronization-preferential dynamical network mod-
el changes the most slowly. It explains thatR spans
widest for local-world topology than for the networks
from the other two dynamical network models.

4 Synchronization robustness and
fragility in dynamical networks

4.1 Synchronization in dynamical networks
For clarity, we takeM = m0 in the construction of
the three models. ThenAlw , Alwso andAlwsp repre-
sent the coupling matrices of the dynamical network
(1) with the local-world evolving network model, the
local-world synchronization-optimal dynamical net-
work model and the local-world synchronization-
preferential dynamical network, respectively, which
hasN nodes andm(N − M) + e0 connections. Let
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Figure 3: (color online)The second-largest eigen-
values of the coupling matrixes for the local-
world networks(solid line with circles), the local-
world synchronization-optimal networks(dotted line
with diamonds) and the local-world synchronization-
preferential dynamical network(dash-dotted line with
squares). Each curve in the figure is the average result
of 5 groups of networks.

λ2lw, λ2lwso andλ2lwsp be the second-largest eigen-
value ofAlw , Alwso andAlwsp, respectively. In nu-
merical computation, the eigenvalues are obtained by
averaging the results of5 runs. For a fixed value of
m andM , the phenomenon is found out thatλ2lw de-
creases to a negative constantλ̄2lw asN increases. At
the same time,λ2lwso decreases to a negative constan-
t λ̄2lwso andλ2lwsp decreases to a negative constant
λ̄2lwsp . For simplify, we takeN = 1000, m = 3 and
M = 10, respectively. The details are as shown in
Table I and in Fig. 3.

Table 1: A comparison of the second-largest eigenval-
ues of different coupling topologies

N m M λ̄2lw λ̄2lwso λ̄2lwsp

1000 3 10 -1.2205 -1.4052 -1.1541

As shown in Fig.3, the three second-largest eigen-
values have converges to the three negative constants
asN increases. It has been observed that the second-
largest eigenvalue of the local-world synchronization-
optimal networks is smallest in the three dynamical
network models, which indicates that the synchro-
nizability of the local-world synchronization-optimal
network model is the stronger among the three mod-
els.

Recently, it has been paid more and more atten-
tion to that the relation between the complex dynam-
ic network topology characteristic and the network
synchronizability by study scholars. The recently re-

search work have discovered that many factors have
had the different influence on the network synchroniz-
ability, such as the maximum degree, the average way
length, the degree distribution. Generally speaking,
networks can be divided into two categories, that is,
homogeneous networks and heterogeneous networks.
For homogeneous networks, shorter average distance
will lead to better synchronizability[29]. Some nu-
merical studies have been done to check if the max-
imal betweennessBmax is a proper quantity to es-
timate network synchronizability for heterogeneous
networks[30, 31]. The effects of the maximum be-
tweenness centralityBmax on the network synchro-
nizability appear to be as follow[29, 30]: Synchro-
nizability is always improved asBmax is reduced.
Therefore, the betweenness centrality is proposed as
a suitable indicator for predicting synchronizability
on complex networks. On the one hand, we can see
that the second-largest eigenvalue of the ’LWSP’ is
largest as shown in Fig. 3. Inequality (5) implies that
the synchronizability of network (1) can be character-
ized by the second-largest eigenvalue of its coupling
matrix, i.e., the smaller the second-largest eigenval-
ue, the stronger the synchronizability of a network.
Then it is clear that the synchronizability of the ’L-
WSP’ is weakest. On the other hand, we also notice
in Fig. 4 that the maximum betweenness centrality
of the ’LWSP’ is largest among the three models. At
the same time, the local-world node deleting evolving
network is one of heterogeneous networks as shown
in Fig.1. Accordingly, the view, namely, synchroniz-
ability is always improved asBmax is reduced, has
been validated through the foregoing two simulation-
s. Besides, the computation of the betweenness is not
an easy job, and is especially impossible when the in-
formation of the network is incomplete. For heteroge-
neous networks, Chenet al.[32] provided some clues
to mathematically solve the relation between the syn-
chronizability and the network degree. They pointed
out that the maximal degree was a proper quantity to
predict network synchronizability.

Here it is worthwhile to emphasize that we have
found some evidence indicating there may exist some
common features between synchronization and net-
work traffic on a dynamical level [28, 33-38]. Many
previous works focus on the relationship between the
distribution of BC and the capability of communica-
tion networks, with a latent assumption that the in-
formation packets go along the shortest paths from
source to destination. Hence, the BC is always con-
sidered as a static topological measure of networks.
Here we discover that this quantity is determined both
by the routing algorithm and network topology, thus
one should pay more attention to the design of net-
work topology. We believe this work may be helpful
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Figure 4: (color online)The values ofBmax

for the local-world networks(solid line with cir-
cles), the local-world synchronization-optimal
networks(dotted line with diamonds) and the
local-world synchronization-preferential dynamical
network(dash-dotted line with squares). Each curve
in the figure is the average result of 5 groups of
networks.

for understanding the intrinsic mechanism and the ca-
pability of network traffic.

4.2 Robustness and fragility
Now we consider the robustness of synchronization in
dynamical network (1) against either random or spe-
cific removal of a small fraction f (0 < f < 1) of
nodes in the network. Clearly, the removal of some n-
odes in a network (1) will change its coupling matrix.
However, if the second-largest eigenvalue of the cou-
pling matrix remains unchanged, then the synchroniz-
ability of the network will also remain unchanged af-
ter the removal of some of its nodes.

Let A ∈ RN×N and Ã ∈ R(N−[fN ])×(N−[fN ])

be the coupling matrices of the original network with
N nodes and the new network after removal of[fN ]

nodes, respectively. Denoteλ2 andλ̃2 as the second-
largest eigenvalues ofA andÃ, respectively. Suppose
that nodesi1, i2, ..., i[fN ] have been removed from the
network. One can construct the new coupling matrix
Ã from the original coupling matrixA as follows[11]:

(i) Get the minor matrixĀ of A by removing the
i1th, i2th, ..., i[fN ]th row-column pairs ofA.

(ii)Obtain Ã = (ãij) by re-computing the diago-
nal elements of the minor matrix̄A = (āij) as follow-
ing:











ãij = āij , i 6= j

ãij = −
N−[fN ]

∑

j=1,j 6=i

āij, i = 1, 2, ..., N − [fN ].
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Figure 5: (color online)Synchronization robustness
against random failures: changes of the second-
largest eigenvalues of the local-world networks(solid
line with circles), the local-world synchronization-
optimal networks(dotted line with diamonds) and
the local-world synchronization-preferential dynam-
ical network(dash-dotted line with squares). Each
curve in the figure is the average result of 5 groups
of networks.

In the simulation, we takeN = 1000. The orig-
inal network with the local-world topology, the local-
world synchronization-optimal topology or the local-
world synchronization-preferential topology contain-
s 1000 nodes and about3000 connections. We have
known from Refs.18 that the synchronizability of the
original coupled network remains almost unchanged
when a scale-free dynamical network has a random
failure, for example, a very small fraction f of nodes
are randomly removed; however, the synchronizabil-
ity of the original coupled network is also decreased
significantly or even destroyed when the network is
attacked intentionally, for example, a small fraction f
of ”big” nodes are removed and then the original net-
work changes significantly and even breaks into parts.
These tell us: a scale-free network regarding its dy-
namical synchronization has the meanings of ”robust-
ness and yet fragility”.

Table 2: A comparison of the decreased magnitudes
of the second-largest eigenvalues when5% nodes are
respect to random and specific removed.

Robustness Fragility
LW 25.88% 92.79%

LWSO 32.83% 86.5%

LWSP 23.72% 81.4%

It has been shown as in Fig. 5 that the value of
the second-largest eigenvalues of the ’LWSP’ has de-
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Figure 6: (color online)Synchronization fragility a-
gainst specific attacks: changes of the second-
largest eigenvalues of the local-world networks(solid
line with circles), the local-world synchronization-
optimal networks(dotted line with diamonds) and
the local-world synchronization-preferential dynam-
ical network(dash-dotted line with squares). Each
curve in the figure is the average result of 5 groups
of networks.

creased from -1.1541 to -0.8803 when as many as5%
of randomly chosen nodes are removed. Then the de-
creased magnitude of the second-largest eigenvalues
of the ’LWSO’ and the ’LW’ is almost 32.83 percent
and 25.88 percent, respectively. When more vertices
are randomly removed, it is no significant that the re-
duction in the second-largest eigenvalue of the cou-
pling matrix. This means that the ’LWSP’ is most
robust in the three models against random failures.
Then we consider the fragility of the synchronizabil-
ity with respect to deliberate attacks. A few isolated
vertices or clusters may take place during the process
of deliberate attacks. We removed the vertices with
the highest degree and found that the second-largest
eigenvalue of the ’LWSO’ reduced from -1.4052 to
-0.1895 when about5% of the most connected ver-
tices were removed at every time step. As shown in
Fig. 6, the decreased magnitude of the second-largest
eigenvalue of the ’LW’ and the ’LWSP’ is about 92.79
percent and 81.4 percent, respectively. This implies
that the ’LWSP’ is least vulnerable to specific removal
of those most connected vertices in the three model-
s. The details are as shown in Table II. Accordingly,
the local-world synchronization-preferential dynami-
cal network is particularly well-suited to tolerate ran-
dom errors compared with the other two dynamical
networks. Moreover the local-world synchronization-
preferential dynamical network is particularly well-
suited to tolerate intentional attacks in the three net-
works.

5 Conclusion
In this paper, we have proposed a local-world
synchronization-preferential growth topology model.
We also investigate the synchronizability of a class
of continuous-time dynamical networks. Then the
view have been validated that synchronizability is al-
ways improved as the maximum betweenness cen-
trality Bmax is reduced for heterogeneous network-
s. We have found some evidence indicating there
may be some common features between synchroniza-
tion and network traffic on a dynamical level. So
this work may be helpful for understanding the in-
trinsic mechanism and the capability of network traf-
fic. Then we also investigate the robustness of the
synchronizability with respect to random failures and
the fragility of the synchronizability with specific re-
moval of nodes. Numerical simulations show that
the local-world synchronization-preferential dynami-
cal network is particularly well-suited to tolerate ran-
dom errors compared with the other two dynamical
networks. Moreover the proposed network is partic-
ularly well-suited to tolerate intentional attacks in the
three networks.
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[8] P. Erd̈os and A. Ŕenyi, On the evolution of ran-
dom graphs,Publications of the Mathematical
Institute of the Hungarian Academy of Sciences,
vol. 5, pp. 17-61, Jan. 1959.

[9] D. J. Watts and S. H. Strogatz, Collective dy-
namics of ”small-world” networks,Nature, vol.
393, pp. 440-442, Jun. 1998.

[10] A. -L. Barab́asi and R. Albert, Emergence of s-
caling in random networks,Science, vol. 286, p-
p. 509-512, Oct. 1999.

[11] J. Fan and X. F. Wang, On synchronization in
scale-free dynamical networks,Physica A, vol.
355, pp. 657-666, May. 2005.

[12] G. Bianconi and A. L. Barab́asi, Competi-
tion and multiscaling in evolving networks,Eu-
rophys. Lett., vol. 54, pp. 436-442, Apr. 2001.

[13] A. Arenas, D. -G. Albert, J. Kurths, Y. Moreno,
and C. S. Zhou, Synchronization in complex
networks,Physics Reports, vol. 469, pp. 93-153,
Oct. 2008.

[14] C. J. Li,W. W. Yu and T. W. Huang, Impulsive
synchronization schemes of stochastic complex
networks with switching topology: average time
approach,Neural Networks, vol. 54, pp. 85-94,
Jun. 2014.

[15] W. W. Yu, G. R. Chen, J. H. L̈u and J. Kurth-
s, Synchronization via pinning control on gener-
al complex networks,SIAM Journal on Control
and Optimization, vol. 51, pp. 1395-1416, Apr.
2013.

[16] Y. Zhao, Z. S. Duan, G. H. Wen and Y. J.
Zhang, Distributed finite-time tracking control
formulti-agent systems: an observer-based ap-
proach,Systems& Control Letters, vol. 62, pp.
22-28, Jan. 2013.

[17] W. W. Yu, G. R. Chen and M. Cao, Some
necessary and sufficient conditions for second-
order consensus inmulti-agent dynamical sys-
tems ,Automatica, vol. 46, pp. 1089-1095, Jun.
2010.

[18] Y. Zhao, Z. Li and Z. Duan, Distributed con-
sensus tracking of multi-agent systems with non-
linear dynamics under a reference leader ,Inter-
national Journal of Control, vol. 86, pp. 1859-
1869, Oct. 2013.

[19] X. Li and G. Chen, A local-world evolving net-
work model,Physica A, vol. 328, pp. 274-286,
Jan. 2003.

[20] S. W. Sun, Z. X. Liu, Z. Q. Chen and Z. Z.
Yuan, Error and attack tolerance of evolving net-
works with local preferential attachment ,Phys-
ica A, vol. 373, pp. 851-860, Jan. 2007.

[21] Z. P. Fan, G. Chen and Y. N. Zhang, A com-
prehensive multilocal-world-model for complex
networks,Physics Letters A, vol. 373, pp. 1601-
1605, Apr. 2009.

[22] X. F. Wang and G. R. Chen, Synchronization in
scale-free dynamical networks: robustness and
fragility, IEEE Trans. CAS I, vol. 49, pp. 54-62,
Jan. 2002.

[23] C. W. Wu and L. O. Chua, Synchronization in
an array of linearly coupled dynamical systems,
IEEE Trans. CAS I, vol. 42, pp. 430-447, Aug.
1995.

[24] M. Barahona and L. M. Pecora, Synchroniza-
tion in small-world systems,Phys. Rev. Lett.,
vol. 89, pp. 054101, Jul. 2002.

[25] J. N. Tang and P. Z. Liu, Synchronization in
a novel local-world dynamical network model,
Math. Probl. Eng., vol. 2014, pp. 851403, May.
2014.

[26] Y. Y. Gu and J. T. Sun, A local-world node
deleting evolving network model,Phys. Lett. A,
vol. 372, pp. 4564-4568, Jul. 2008.

[27] I. J. Farkas, I. Derenyi, A. L. Barabási and
T. Vicsek, Spectra of real-world graphs: Be-
yond the semicircle law,Phys. Rev. E, vol. 64,
pp. 026704, Jul. 2001.

[28] H. -T. Zhang, T. Yu, J. -P. Sang and X. -W. Zou,
Dynamic fluctuation model of complex network-
s with weight scaling behavior and its applica-
tion to airport networks,Physica A, vol. 393, pp.
590-599, Jan. 2014.

[29] T. Nishikawa, A. E. Motter, Y. -C. Lai and
F. C. Hoppensteadt, Heterogeneity in oscillator
networks: are smaller worlds easier to synchro-
nize?,Phys. Rev. Lett., vol. 91, pp. 014101, Jul.
2003.

[30] H. Hong, B. J. Kim, M. Y. Choi and H. Park,
Factors that predict better synchronizability on
complex networks,Phys. Rev. E, vol. 69, pp.
067105, Jun. 2004.

[31] R. Cohen and S. Havlin, Scale-free network-
s are ultrasmall,Phys. Rev. Lett., vol. 90, pp.
058701, Feb. 2003.

[32] L. Chen, H. B. Huang, G. X. Qi, P. Luo,
C. Qiu, X. D. Zhao and Y. Wang, Searching

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Detian Huang, Peizhong Liu, 

Jianeng Tang, Yuzhao Zhang

E-ISSN: 2224-2856 101 Volume 11, 2016



good indicators for predicting the synchroniz-
ability of heterogeneous networks and beyond,
Europhysics Letters, vol. 84, pp. 50003, May.
2008.

[33] A. E. Motter, C. Zhou and J. Kurths, Net-
work synchronization,diffusion, and the para-
dox of heterogeneity,Phys. Rev. E, vol. 71, pp.
016116, Jan. 2005.

[34] M. Chavez, D. -U. Hwang, A. Amann, H. G. E.
Hentschel and S. Boccaletti, Synchronization is
enhanced in weighted complex networks,Phys.
Rev. Lett., vol. 94, pp. 218701, Jun. 2005.

[35] S. J. Wang, Z. X. Wu, H. R. Dong and G. R.
Chen, Undetermination of the relation between
network synchronizability and betweenness cen-
trality, Chin. Phys. B, vol. 20, pp. 048903, Apr.
2011.

[36] Z. H. Guan, L. Chen and T. H. Qian, Rout-
ing in scale-free networks based on expanding
betweenness centrality,Physica A, vol. 390, pp.
1131-1138, Mar. 2011.

[37] M. Zhao, T. Zhou, B. -H. Wang and W. -X.
Wang, Enhanced synchronizability by structural
perturbations,Phys. Rev. E, vol. 72, pp. 057102,
Nov. 2005.

[38] T. Zhou, M. Zhao and B. -H. Wang, Better syn-
chronizability predicted by crossed double cy-
cle,Phys. Rev. E, vol. 73, pp. 037101, Mar. 2006.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Detian Huang, Peizhong Liu, 

Jianeng Tang, Yuzhao Zhang

E-ISSN: 2224-2856 102 Volume 11, 2016




